Université Paris Sud - Orsay

Cours de Génétique - L1 - Biol 103

Darío Coen

1 - Introduction : définition de la Génétique

Gène, génome, chromosomes

2 - Introduction à la définition de gène

- 2.1 Définitions du mot « gène »
- 2.2 Définition moléculaire du gène
- 2.3 Structure d'un gène eucaryote

3 - Base de génomique

- 3.1 Séquençage des génomes eucaryotes
- 3.2 Annotation des génomes eucaryotes
- 3.3 Que nous apprend l'analyse des génomes ?
- 3.4 Rapports génétique génomique

4 - Mutation

- 4.1 « Anatomie» des différents types de mutations et leurs conséquences
 - a) Mutations ponctuelles (changement de nucléotides)
 - (i) Substitutions de base
 - (ii) Addition ou délétion d'un nucléotide
 - (iii) Incidence des mutations ponctuelles
 - o □ Dans les séquences codantes : faux-sens, non-sens, silencieuse.
 - o □ Dans les séquences non codantes : séquences cis-régulatrices, promoteur, maturation ARN, etc...
 - b) Variation du nombre de motifs répétés de nucléotides
 - (i) Microsatellites.
 - (ii) Minisatellites
 - c) Insertions d'éléments mobiles
 - (i) Définition ET
 - (ii) Types d'ET
 - o ☐ Mécanisme conservatif (« Couper coller »)
 - o ☐ Mécanisme réplicatif (« Copier coller »)
 - (iii) Effet des insertions
 - d) Mutations chromosomiques
 - (i) Différents types
 - o□Délétions
 - o□Inversions
 - o □ Duplications et Translocations
 - (ii) Effets directs
 - o□Point de cassure
 - o□Fusions « régulationnelles »
 - o ☐ Fusions traductionnelles
 - (iii) Effets indirects: méiose
 - e) Mutation génomiques : changements du nombre de chromosomes

- (i) Aneuploïdie
- (ii) Polyploïdie
- 4.2 Cause des mutations
 - a) Erreurs au cours de la réplication
 - b) Modifications de l'ADN
 - *(i)* Agents chimiques
 - (ii) Agents physiques
- 4.3 Taux de mutation / Taux de mutants

Division cellulaire et cycles de vie

5 - Division cellulaire et chromosomes

- 5.1 Structure et organisation des chromosomes
- 5.2 Cycle cellulaire
 - Phases du cycle cellulaire et points de contrôle.

6 - La mitose

- 6.1 La mitose vue au microscope
- 6.2 La mitose vue au niveau moléculaire
- 6.3 Conséquences génétiques de la mitose et notion de clone

7 - La méiose

- 7.1 La méiose vue au microscope
- 7.2 Comparaison avec la mitose
- 7.3 La méiose vue au niveau moléculaire
- 7.4 Comparaison moléculaire avec la mitose

8 - Accidents de la division cellulaire

9 - Cycles de vie des eucaryotes

• Importance du niveau d'observation.

Conséquences génétiques de la méiose : Ségrégation d'un couple d'allèles

Note (pour ce cours): un couple d'allèles = 1 site = 1 locus

10 - Conséquences de la méiose sur la ségrégation génétique.

- 10.1 Représentation pour les généticiens
- 10.2 Ségrégation d'un couple d'allèles : résultat attendu

11 - Principes de l'analyse de ségrégation.

- 11.1 Méthode générale de l'analyse de ségrégation
 - a) Formulation d'une hypothèse
 - b) Écriture des génotypes
 - c) Écriture des phénotypes correspondants
 - d) Prédiction des proportions attendues des différents phénotypes
 - e) Calcul des effectifs attendus
 - f) Comparaison statistique des distributions observée et attendue (effectifs !)

- g) Conclusion : hypothèse acceptée ou rejetée.
- 11.2 Haplobiontiques
 - a) Tétrades
 - b) Produits de la méiose en vrac
- 11.3 Diplobiontiques
 - a) Cas des locus autosomaux
 - b) Cas des locus liés au sexe
- 11.4 Bases de génétique humaine : analyse des pedigrees

Les outils de l'analyse génétique

12 - Polymorphisme et méthodologie génétique

- 12.1 Le polymorphisme génétique des populations naturelles
- 12.2 Les sources du polymorphisme
- 12.3 Le polymorphisme et la méthodologie génétique
 - a) Le réduire
 - (i) Souche de référence « sauvage »
 - (ii) « Clonage »; notion de clone
 - b) Le décrire, l'analyser : génétique des populations
 - c) L'utiliser : génétique formelle et moléculaire
 - d) L'utilisation du polymorphisme : « casser pour voir »

13 - Mutations, caractères et phénotypes

- 13.1 Notion de caractère en génétique
- 13.2 Les différents (phéno)types de mutants
 - a) morphologiques
 - b) Mutations conditionnelles en microbiologie
 - (i) Auxotrophie/Prototrophie
 - (ii) Utilisation
 - (iii) Résistance
 - c) Autres types de caractères
 - (i) Létalité
 - (ii) Stérilité
 - (iii) Comportement
 - (iv) Caractères « moléculaires »
 - Niveau protéine
 - Niveau ADN
 - d) Mutations conditionnelles : thermosensibilité
- 13.3 La sélection des mutants: notion de « crible »
 - *a*) Crible positif
 - b) Crible négatif
 - c) Protocole de mutagenèse « unicellulaires » : la méthode des répliques

14 - Méthodes de l'analyse génétique

- 14.1 Deux types de tests : tests fonctionnels (fonction) et analyse de ségrégation (position).
- 14.2 Principe et réalisation des tests de ségrégation : voir § 11.
- 14.3 Principe et réalisation des tests fonctionnels.
- 14.4 Encore une fois (!): Importance du niveau d'observation.

Classification fonctionnelle des mutations

15 - Le test de dominance - récessivité

15.1 Définition et signification

- a) Définition
- b) Mécanisme(s) de la dominance
 - (i) Mutations perte-de-fonction et gain-de-fonction
 - (ii) Exemples

15.2 Mise en œuvre du test de dominance - récessivité

- a) Observation de la phase diploïde du cycle : problème des haplobiontiques.
- b) Unicellulaires
- c) Métazoaires
 - (i) Mutations autosomales
 - (ii) Mutations liées au sexe

15.3 Classification des mutants

- a) Pénétrance/Expressivité
- b) Dominance incomplète, semi-dominance
- c) Co-dominance
- d) Pléïotropie

Effet de la <u>mutation</u> d'un gène qui se manifeste au niveau du <u>phénotype</u> par la modification de plusieurs <u>caractères</u> distincts.

15.4 Importance du caractère/phénotype analysé

16 - Le test de complémentation fonctionnelle

16.1 Principe et signification

- a) Définition
- b) Mécanisme
- c) Le gène comme unité de fonction

16.2 Mise en œuvre du test de complémentation fonctionnelle

- a) Observation de la phase diploïde du cycle : problème des haplobiontiques.
- b) Unicellulaires
- c) Métazoaires
 - (i) Mutations autosomales
 - (ii) Mutations liées au sexe

16.3 Règle

Chaque membre d'un groupe de complémentation ne complémente avec aucun autre membre du même groupe et complémente avec tous les membres de tous les autres groupes.

16.4 Cas particuliers et exceptions

- a) Un mutant appartient à plusieurs groupes de complémentation distincts.
- b) Complémentation entre allèles d'un même gène.*
- c) Absence de complémentation entre mutants de gènes différents.*

17 - Conclusion : retour sur la notion de gène

18 - Quelques exemples de l'utilisation de la méthodologies génétique

^{*} Non étudiée cette année